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Preface

This model investigation was conducted for the U.S .Army Engineer District,
Rock Island, by the U.S. Army Engineer Waterways Experiment Station (WES),
Vicksburg, MS. The study was conducted in the Hydraulics Laboratory of WES
from November 1988 to November 1990.

In October 1996, the WES Hydraulics Laboratory merged with the WES
Coastal Engineering Research Center to form the coastal and Hydraulics
Laboratory (CHL). Dr. James R. Houston is the Director of the CHL and
Messrs. Richard A. Sager and Charles C. Calhoun, Jr., are Assistant Directors.

During the course of the model study, representatives of the Rock Island
District; the North Central Division, Headquarters, U.S. Army Corps of Engi-
neers; and other navigation interests visited WES at different times to observe
the model and discuss test results. The Rock Island District was informed of the
study’s progress by monthly progress reports and by evaluation reports at the end
of each test.

The model study was conducted under the general supervision of
Messrs. F. A. Herrmann, Jr., and R. A. Sager, CHL, and under the direct
supervision of Mr. M. B. Boyd and Dr. L. L. Daggett, CHL. The principal
investigators in immediate charge of the model were Mr. H. E. Park and
Mr. R. T. Wooley, assisted by Messrs. E. Johnson, J. Sullivan, and M. Caldwell,
and Mses. D. P. George and P. Birchett, all of CHL. This report was prepared by
Mr. Park.

At the time of publication of this report, Director of WES was Dr. Robert W.
Whalin. Commander was COL Robin R. Cababa, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.




Conversion Factors, Non-SlI to
Sl Units of Measurement

Non-SI units of measurement used in this report can be converted to
SI (metric) units as follows:

Multiply By ’ To Obtain

cubic feet 0.02831685 cubic meters
degrees (angle) 0.01745329 radians

feet 0.3048 meters

miles (U.S. statute) 1.609344 kilometers
square miles 2.58998 square kilometers




1 Introduction

Location and Description of Prototype

Lock and Dam No. 19 is located on the right descending bank of the Missis-
sippi River approximately 364.3 river miles' above the mouth of the Ohio River
at Keokuk, Iowa (Figure 1). The normal operating pool at Lock and Dam No. 19
is at elevation (el) 518.2 and extends 46.2 miles up the Mississippi River to Lock
and Dam No. 18. The principal existing structures are a 110-ft by 1,200-ft-long
lock, a closure dam that connects the 1,200-ft lock to the powerhouse, the Union
Electric Powerhouse with 16 power generating units, a gated dam, consisting of
119 gate bays with crest elevation of 507.2, that extends from the Union Electric
Powerhouse to the left bank, and a radial ice fender that extends upstream of the
dam about 1,300 ft.

History of Project

In 1905, the Mississippi River Power Company was authorized to construct a
hydroelectric plant with a lock, dam, powerhouse, and a dry dock at Keokuk,
Iowa. Upon project completion in 1913, the lock and dry dock were turned over
to the U.S. Government. By the Rivers and Harbor Act of 1935, Congress
authorized a system of locks and dams that would provide a channel 9 ft in depth
and of sufficient width for long-haul commercial carrier service from St. Louis,
Missouri, to Minneapolis, Minnesota. The existing 110-ft by 360-ft lock and
dam at Keokuk were integrated into this project and became known as Lock and
Dam No. 19.

In general, the locks and dams on the Upper Mississippi were constructed by
the Federal Government during the 1930's. The design size of the locks was to
be 110 ft by 600 ft (usable chamber). Development of the waterway and more
powerful pushers significantly increased traffic on the waterway. After World
War II, this development showed that the 110-ft by 600-ft locks were too small

1 A table of factors for convefting non-SI units of measurement to SI units is presented on page vi.

Chapter 1 Introduction
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to handle future carrier demands; therefore, the maximum capacity of these locks
would be reached in the near future.

After about 30 years of wear and tear on the existing lock, the increases in
shipping demands, and because the existing lock was a severe bottleneck in the
navigation system, the present day 110-ft by 1,200-ft (usable chamber) was
constructed in the 1950's. This lock is located between the dry docks and the
Iowa shore.

Purpose of Model Study

Although the design of the proposed improvements for the upper lock
approach to Lock and Dam No. 19 was based on sound theoretical design
practice and experience for the time it was built, conditions in the upper lock
approach were found to be extremely complex. This could be attributed to the
crosscurrents in the upper lock approach, irregular channel configurations, and
limited approach channel. Navigation conditions vary with location and flow
conditions upstream of the structure, and an analytical study to determine the
hydraulic effects expected to result from a particular design is both difficult and
inconclusive. Therefore, the comprehensive model study was considered
necessary to:

a. Determine the effects of the proposed alternatives on navigation in the
upper lock approach.

b. Develop modifications that could improve navigation conditions.

c. Evaluate navigation conditions for tows entering and leaving the upper
lock approach.

The model also demonstrated the conditions resulting from the various

alternatives tested and satisfied design engineers and navigation interests of the
design's acceptability.

Chapter 1 Introduction




2 The Model

Description

The model reproduced about 2.4 miles of the Mississippi River and the
adjacent overbank area that contains riverflows to at least el 518.2. The model
duplicated about 1.9 miles of river channel above the dam and about 0.5 mile of
river channel below the dam. The model was a fixed-bed type with the overbank
area and the channel molded of sand cement mortar to sheet metal templates set
to the proper grade. The lock, powerhouse, gated spillway, and the radial ice
fender were constructed of sheet metal and plexiglass and set to the proper
grade. The channel and overbank were molded to conform to a 1943
hydrographic-topographic survey.

Scale Relations

The model was built to an undistorted linear scale of 1:120, model to proto-
type. This scale allows accurate reproduction of velocities, eddies, and cross-
currents that affect navigation. Other scale relations resulting from the linear
scale ratio are as follows:

Characteristic Units of Length Scale Relation Mode!: Prototype
Area A=L? 1:14,400

Velocity V=1L 1:10.95

Time T=L" 1:10.95

Discharge D=L 1:157,743

Roughness Manning’s n = L® 1:2.22

(Manning’s n)

Measurements of current velocities, discharge, and water-surface elevations can
be transferred quantitatively from model to prototype by means of these scale
relations.

Chapter 2 The Model




Appurtenances

Water was supplied to the model by a 10-cfs pump operating in a circulating
system. A venturi meter and a valve were used to control and measure the
discharge. Water-surface elevations were measured with piezometer gauges in
the model channel and were connected to a centrally located gauge pit. A
tailgate, at the lower end of the model, was used to control the tailwater
elevation for the discharge tested.

Velocities and current directions were measured in the model by a video
tracking system which tracks a light source attached to floats submerged to the
depth of a foadad barge (9.0 ft). A video tracking system measured the path
and velocity ot the tloat and confetti determined surface current patterns. A
radio-controlicd model towboat and 15-barge tow with 9.0-ft draft were used to
determinc and demonstrate the effects of currents on tows entering and leaving
the upper lock approach of the project. The towboat was equipped with twin
screws and was propelled with two small electric motors operating with the

battery in the 10w The speed and rudders of the tow were remote-controlled,
and the towboat could be operated in forward and reverse at scale speeds
comparable to those used by towboats on the Mississippi River.

Model Adjustments

The moda ! was constructed of brushed cement mortar to provide a roughness
(Manning s ny ot ubout 0.012, which corresponds to a roughness in the prototype
of about 0.026 With the existing structures in place, the powerhouse was
calibrated tor o manimum discharge of 62,000 cfs. With riverflows exceeding
maximum powcrhouse discharge, the additional flow was passed through the
gated spillway . The model was checked against the available prototype data.
The spillway gates were operated according to rules used by Corps operators.
The results indicated that the model reproduced with a reasonable degree of
accuracy the conditions in the prototype based on the available data.

Chapter 2 The Model




3 Tests and Results

The primary concern of the tests was to study the flow patterns, measurement
of velocities and water-surface elevation, and the effects of currents on the
movement of the model tow entering and leaving the upper lock approach.
These conditions were studied with several alternatives.

Test Procedures

The following representative selection of flows was used for testing based on
information furnished by the U.S. Army Engineer District, Rock Island:

Riverflow (cfs) Upper Poo!l (el) Tailwater (el)
29,000 518.2 480.9
62,000 518.2 482.4
122,000 518.2 487.4
177,000 ' 518.2 491.4
249,000 518.2 495.1

All plans were evaluated with maximum powerhouse discharge (62,000 cfs).

Riverflows were reproduced by introducing the proper discharge and main-
taining the upper pool elevation of 518.2 with the powerhouse and the dam
gates. The tailgate was manipulated to maintain the proper tailwater elevation.
During the base test, the upper pool elevation was controlled at gauge 7 (Fig-
ure 2). For subsequent tests the upper pool elevation was controlled at gauge 5
to the elevations obtained during the base test.

Current direction was determined by plotting the path of floats with respect to
ranges established for that purpose, and velocities were measured by timing the
travel of floats over measured distances. In the interest of clarity, only the main
trends are shown on plots of currents in turbulent areas or where crosscurrents or
eddies existed. Navigation conditions for tows moving through the study reach
were evaluated and demonstrated using the model tow with a 15-barge tow

Chapter 3 Tests and Results
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drafting 9.0 ft. The path of the model tow was recorded with a video tracking
system and, in some instances, with multiple-exposure photography.

Base Tests

Description

Base tests, as shown in Figures 2 and 3 and Photo 1, were conducted with the
model reproducing existing conditions. These tests verified that the model
reproduced prototype conditions and provided information and data that could
evaluate the effects of the proposed alternatives on current direction and
velocities, water-surface elevations, and navigation conditions. Existing
conditions consisted of the following principal features:

a. An existing 110-ft by 1,200-ft lock located on the Iowa shore.

b. The Union Electric Powerhouse with 15 power-generating units with a
maximum capacity of 4,000 cfs per unit and 1 smaller unit with a
maximum capacity of 2,000 cfs used to generate power for the
powerhouse.

c. A cellular sheetpile closure dam that connects the 1,200-ft lock to the
powerhouse.

d. The remaining portion of the 525-ft-long ice fender located on the right
descending bank just upstream of the lock approach. The only remaining
portion of the ice fender are the piers below elevation 504.2.

e. Aradial ice fender that extends about 1,300 ft upstream of the gated dam
and a 38-ft-diam cell adjacent to the end of the radial ice fender.

f A gated dam extends from the Union Electric Powerhouse to the left bank
and has 119 gate bays with the crest at el 507.2.

Results

Current directions and velocities. Current direction and velocity data, as
shown in Plates 1-10, indicated that the maximum velocity of the currents
between the end of the radial ice fender and the right bank ranged in magnitude
from 1.0 fps with a 29,000-cfs riverflow to 5.3 fps with a 249,000-cfs riverflow.
The maximum velocity of the currents recorded in the forebays of the power-
house and the lock ranged in magnitude from 1.1 to 4.8 fps with 29,000 and
249,000-cfs riverflows, respectively. A large clockwise eddy, as shown in
Photo 2, formed in the upper lock forebay with all flows tested. The maximum
upstream velocity of the upstream currents ranged from less than 0.5 to 0.7 fps.

Chapter 3 Tests and Results
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Water-surface elevations. Water-surface elevations, for the base tests,
shown in Table 1, indicate the slope in the water surface (model gauges 1-7)
ranged from less than 0.1 ft/mile with a 29,000-cfs riverflow to 0.2 ft/mile with a
249,000-cfs riverflow.

Navigation conditions. The model test, conducted with a 105-ft-wide by
975-ft-long barge flotilla with a 150-ft pusher, indicated that navigation condi-
tions for downbound tows were very difficult and would require a considerable
amount of maneuvering for tows to enter the lock due to the current alignment in
the lock approach with all flows tested. With the 62,000-cfs and 122,000-cfs
riverflows, downbound tows approaching close along the right descending bank
and maintaining proper alignment could align with and enter the lock with a
minimum amount of maneuvering (Photos 3 and 4). However, if the tow moves
away from the right bank and intercepts the currents moving across the lock
approach toward the powerhouse, the tow could lose control and be pushed into
the powerhouse (Photo 5). With the 249,000-cfs riverflow, considerable maneu-
vering and possibly some type of assistance would be required for downbound
tows to align with and enter the lock chamber (Photo 6). There was a strong
tendency for the tow to be moved into the powerhouse. If tows maintained con-
trol, then navigation conditions for upbound tows leaving the lock were satisfac-
tory with all flows tested (Photos 7 - 9).

Pre-existing Conditions

Description

Pre-existing conditions, as shown in Figure 4, are the same as the base test
with one exception: a ported ice fender some 525 ft long extending into the river
channel from the right descending bank.

Results

Current direction and velocities. Current direction and velocity data, as
shown in Plates 11-15, indicate that maximum velocities through the 300-ft
opening between the ice fenders ranged in magnitude from 1.0 fps with a
29,000-cfs riverflow to 4.7 fps with a 249,000-cfs riverflow. The maximum
velocities recorded in the forebay of the powerhouse ranged in magnitude from
1.1 fps with a 29,000-cfs riverflow to 4.7 fps with a 249,000-cfs riverflow. A
large clockwise eddy was observed with all flows tested. The maximum
upstream velocities recorded ranged in magnitude from less than 0.5 to 0.7 fps.

Water-surface elevations. Water-surface elevations for pre-existing condi-
tions are shown in Table 2. The slope in water surface (model gauges 1-7)
ranged from less than 0.1 ft/mile with a 29,000-cfs riverflow to 0.3 ft/mile with a
249,000-cfs riverflow.

Chapter 3 Tests and Results
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Navigation conditions. Navigation conditions ranged from very difficult to
dangerous for downbound tows navigating the 300-ft opening in the ice fenders
and entering the lock approach with all flows tested. With a 62,000-cfs river-
flow and below, downbound tows could drive the 300-ft opening at the ice fen-
ders, as shown in Plates 16 and 17, but there was a tendency to slide toward the
end of the radial ice fender. By driving the 300-ft opening, downbound tows
approach the structures (i.e., the powerhouse or the closure dam between the
lock and the powerhouse) at a high rate of speed. Therefore, to avoid hitting any
structures in the lock approach and to provide a reasonable margin of safety, a
flanking mancuser was necessary. With riverflows above 62,000 cfs, to avoid
sliding or being pushed into the end of the radial ice fender or one of the struc-
tures in the lock approach a flanking maneuver was considered necessary to
navigate throuzh the 300-ft opening at the ice fenders. Once the ice fender was
cleared. it was tound that downbound tows required a considerable amount of
maneuvering or some tvpe of assistance to enter the lock (Plates 18-20). It

should be noted that downbound tows driving the opening in the ice fenders
experienced o strong 1endency to slide toward or into the end of the radial ice
fender (Plutes 21-23). Navigation conditions were satisfactory for upbound tows

leaving the ok tor all tlows tested (Plates 24-29). However, with a 249,000-cfs
riverflow. there was a tendency for upbound tows navigating the 300-ft opening
in the ice tenders 1o slide toward the end of the radial ice fender (Plate 30).

Plan A

Description

Plan A.shownan Figure 5, is the same as the base test, with the following
exceplinn\:

a. The cell at the upstream end of the radial ice fender was removed.

b.  The rudialice fender was shortened 140 ft and its piers were removed to
el 504.2. The remaining radial ice fender extended upstream of the gated
dam about 1.160 ft,

c. A cellular guard wall extended upstream about 2,400 ft from the riverside
lock wall to its intersection with the radial ice fender at sta 37+72.66.
The downstream 825 ft of the guard wall was ported. The ports were
50 ft wide with the top of ports at el 507.2 and were located between cells
land 2,3 and 4, 5 and 6, and 7 and 8. The remaining 1,576.16 ft of the
guard wall is unported.

Results

Current directions and velocities. Current direction and velocity data,
shown in Plates 31-35, indicate a significant change in the current patterns

Chapter 3 Tests and Results
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immediately upstream of the lock forebay and the radial ice fender. With the
29,000- and 62,000-cfs riverflows, when all flow was passing through the power-
house, the current was generally parallel with the right descending bank line to a
point about 1,500 ft upstream of the ice fender and then angled across the lock
approach toward the ice fender. A large, low-velocity eddy formed in the lock
forebay along the right bank opposite the upstream end of the guard wall. With
the 62,000-cfs riverflow and above, flow moved along the guard wall and exited
the lock forebay through the downstream ports. As the riverflow increased and
flow was passed through the dam, the amount of flow entering the lock forebay
increased, the angle of the currents moving across the lock forebay decreased,
and the flow moving along the guard wall and through the downstream ports
increased. The maximum velocity of the currents moving across the approach to
the lock near the upstream end of the guard wall varied from about 1.0 to 4.5 fps
with the 29,000- and 249,000-cfs riverflows, respectively. The maximum veloc-
ity of the currents along the guard wall varied from less than 0.5 to 2.7 fps with
the 29,000- and 249,000-cfs riverflows, respectively. The velocities of the cur-
rent in the forebay of the powerhouse also increased compared to base tests due
to the flow being concentrated through the ice fender. The maximum velocity of
about 5.3 fps was recorded with 249,000-cfs riverflow.

Water-surface elevations. Water-surface elevations for Plan A are shown in
Tables 3 and 4 and gauge locations are shown in Figure 6. The slope in water
surface from model gauges 1 and 5 ranged from less than 0.1 ft/mile with a
29,000-cfs riverflow to about 0.3 ft/mile with a 249,000-cfs riverflow. The
water-surface elevations increased at model gauge 4 and decreased at model
gauge 6 when compared to the base test (Table 1). The maximum increase in
stage at gauge 4 was about 0.2 ft and the maximum decrease in stage at gauge 6
was about 0.5 ft with a 249,000-cfs riverflow. The head loss across the guard
wall, as shown in Table 4, ranged from 0.1 to 0.7 ft with riverflows of 29,000
and 249,000 cfs, respectively. The head loss across the radial ice fender ranged
from 0.1 to 0.5 ft with 29,000 cfs- and 249,000-cfs riverflows, respectively.

Navigation conditions. Navigation conditions were satisfactory for tows
entering and exiting the upper lock approach with all flows tested. With
riverflows through 122,000 cfs, downbound tows could drive into the protection
of the guard wall, reverse engines to reduce speed when the head of the tow was
about 2,500 ft upstream of the lock, and land on the guard wall to align with the
lock chamber without major difficulties (Plates 36 and 37). As the riverflow
increased to 177,000 cfs and above, downbound tows were required to flank
along the right descending bank to a point immediately upstream of the ice
fender and then drive into the lock forebay (Plates 38 and 39). This maneuver
was necessary to avoid entering the lock forebay at a high rate of speed. Some
maneuvering was required for upbound tows to exit the lock forebay. Upbound
tows could rotate the head of the tow off the guard wall and exit the lock forebay
along the right descending bank without major difficulties (Plates 40-43).
However, tows driving upstream along the guard wall experienced a strong
tendency to be pinned against or rotated around the upstream end of the guard
wall.

Chapter 3 Tests and Results
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Plan A-Modified

Description

Plan A-Modified, shown in Figure 7, is the same as Plan A, with the follow-
ing exceptions:

a. The guard wall was shortened about 560 ft to sta 32 + 10.9.

b. The downstream 825-ft portion of the guard wall was ported to pass flow.
There were eight 50-ft-wide ports between cells 1 and 8 and one 25-ft
port between the lock and cell 1. The top of all ports was el 507.2. The
remaining 1,014.4 ft of the guard wall was non-ported.

Results

Current direction and velocities. Current direction and velocity data,
shown in Plates 44-48, indicate shortening the guard wall reduced the angle of
the currents moving across the lock forebay while the velocities of the current
remained about the same as with Plan A. The currents were generally parallel
with the right bank to a point about 500 ft upstream of the ice fender and then
angled across the forebay toward the powerhouse. With 122,000-cfs riverflows
and above, a large low-velocity eddy formed along the right bank opposite the
upstream end of the guard wall. As the riverflow increased, the size and
intensity of the eddy increased. With riverflows of 62,000 cfs and above, flow
moved along the guard wall and exited through the downstream guard wall ports.
The maximum velocity of the currents moving across the approach to the lock
near the upstream end of the guard wall varied from about 1.0 to 4.1 fps with the
29,000- and 249,000-cfs riverflows, respectively. The maximum velocity of the
currents along the guard wall varied from less than 0.5 fps to about 1.8 fps with
the 29,000- and 249,000-cfs riverflows, respectively. Shortening the guard wall
reduced the flow through the ice fender with all riverflows and concentrated the
flow through the area between the upstream end of the guard wall and the ice
fender. A maximum current velocity of about 5.2 fps was recorded in the
forebay of the powerhouse with a 249,000-cfs riverflow.

Water-surface elevations. Water-surface elevations for Plan A-Modified
are shown in Table 5. The slope in water surface (model gauges 1 and 5) ranged
from less than 0.1 to about 0.3 ft/mile with 29,000- and 249,000-cfs riverflows,
respectively. Water-surface elevations at model gauge 4 decreased by about
0.1 ft and the stages at model gauge 6 increased by about 0.3 ft with a riverflow
of 249,000 cfs when compared with Plan A.

Navigation conditions. Navigation conditions were satisfactory for tows
entering and exiting the upper lock approach with all riverflows tested
(Plates 49-54). Shortening the guard wall reduced the angle and intensity of the
currents moving across the lock approach and improved navigation conditions
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when compared to Plan A. With riverflows through 177,000 cfs, downbound
tows could drive into the protection of the guard wall, reverse engines to reduce
speed when the head of the tow was about 2,500 ft upstream of the lock, and
land on the guard wall to align with the lock chamber without any major diffi-
culties. Downbound tows driving close along the right bank could approach the
lock at a slow speed. As the riverflow increased to 249,000 cfs, a flanking man-
euver was required for downbound tows to maintain alignment and an acceptable
speed as they entered the lock forebay and approached the guard wall. A down-
bound tow could flank along the right bank to a point just upstream of the ice

fender, then drive into the lock forebay, reversing the engines to approach the
guard wall and align with the lock chamber. This maneuver was necessary to
avoid entering the upper lock approach at high speed. Some maneuvering was

required for upbound tows to exit the lock forebay. Upbound tows could rotate
the head ot the tow off the guard wall and exit the lock forebay along the right
bank without unv ditficulties. However, tows driving upstream along the guard
wall expenienced a strong tendency to be pinned against or forced around the
upstream cnd of the puard wall,

Plan B
Description

Plan B.shownan Figure 8, is the same as the base test with one exception: an
80-ft-diam “prvor”cell was placed 500 ft upstream of the lock at sta 18 + 71.5 in
alignment with the inside face of the riverside lock wall.
Results

Current dircections and velocities. Observation of the model indicated only
very localized changes in current patterns around the pivot cell when compared
to the basc test: therefore, current direction and velocity data were not collected
with this plan.

Water-surface elevations. Observation of the model indicated only very
localized changes in water-surface elevation; therefore, water-surface elevation
data were not collected with this plan.

Navigation conditions. Navigation conditions were generally the same as
with the base test. Properly aligned downbound tows approaching close to and
along the right bank could enter the lock forebay and use the pivot cell to align
with the lock chamber. However, when the tow was aligned with the lock to
enter the chamber about 600 ft of the tow would extend upstream of the cell and
be exposed to the currents moving toward the powerhouse. There was a ten-
dency for the tow to be rotated around the pivot cell with the higher riverflows.
Downbound tows that are not properly aligned entering the lock forebay have a
strong tendency to move toward or into the pivot cell (Plates 55-57). The
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placement of the cell in the lock forebay restricted the maneuvering area for
upbound tows. Upbound tows could not swing the stern of the tow until it
cleared the cell; therefore, there was a tendency for the tow to move into the
radial ice fender (Plates 58-60). As the riverflow increased, the danger of an
upbound tow rotating around the pivot cell or moving into the radial ice fender
increased.

Plan B-1

Description

Plan B-1, shown in Figure 9, is the same as Plan B, with one exception: the
pivot cell was relocated 1,000 ft upstream of the lock at sta 23 + 71.5.

Results

Current direction and velocities. Observation of the model indicated no
significant changes in current patterns when compared to the base test.
Therefore, current direction and velocity data were not recorded.

Water-surface elevations. Observation of the model indicated no significant
changes in water-surface elevation; therefore, water-surface elevation data were
not recorded.

Navigation conditions. Navigation conditions for downbound tows were
slightly improved when compared to Plan B (Plates 61-63). Properly aligned
downbound tows approaching close along the right bank could enter the lock
forebay and use the pivot cell to align with the lock chamber (Plate 61). Down-
bound tows entering the lock forebay misaligned with the lock could land on the
pivot cell, but could be rotated around the cell if the stern is exposed to the cur-
rents moving toward the powerhouse, especially with the higher riverflows
(Plate 62). There was a strong tendency for downbound tows entering the lock
forebay to move toward or into the pivot cell with the higher riverflows
(Plate 63). The placement of the cell in the lock forebay restricted the maneu-
vering area for upbound tows far more than Plan B. Upbound tows could not
swing the stern of the tow until it cleared the cell; therefore, there was a strong
tendency for the tow to be moved into the radial ice fender (Plates 64-66). As
the riverflow increased, the danger of an upbound tow rotating around the pivot
cell or moving into the radial ice fender increased.
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Plan C

Description

Plan C, shown in Figure 10, is the same as the base test, with the following
exceptions:

a. A non-ported diaphragm closure wall was placed 155 ft riverward and
parallel to the center line of the lock. The wall consists of 60-ft-diam
cells with arched diaphragm closures and extends upstream from about
sta 20 + 61.5 to sta 30 + 21.5. The closure wall was 960 ft long with the
top of cells at el 522.2.

b. An earthen dike with top elevation 522.2 and 1V : 6H side slopes
extended from the unused portion of the powerhouse structure at about
sta 17 + 65 to the most downstream cell of the closure wall at about
sta 20 + 70.

Results

Current direction and velocities. Current direction and velocity data,
shown in Plates 67-71, indicated that the current patterns were generally the
same as with Plan A-Modified except there was no flow entering the lock
forebay. The currents were generally parallel with the right bank to a point
about 500 ft upstream of the ice fender and then angled across the lock forebay
toward the powerhouse. The outdraft at the upstream end of the closure wall
was slightly stronger than with Plan A-Modified. A low-velocity eddy formed in
the lock forebay at the upstream end of the closure wall with riverflows of
62,000 cfs and above. The maximum velocity of the currents moving across the
approach to the lock near the upstream end of the closure wall varied from 1.3 to
4.5 fps with 29,000- and 249,000-cfs riverflows, respectively. A large clockwise
eddy formed in the powerhouse forebay with all flows tested. The maximum
upstream current velocities recorded ranged from 1.2 to 2.5 fps with 29,000- and
249,000-cfs riverflows, respectively. The maximum current velocity of about
6.1 fps was recorded in the powerhouse forebay with a 249,000-cfs riverflow.

Point velocities. A directional miniature velocity meter recorded the direc-
tion and velocities of the currents approaching the powerhouse. These measure-
ments determined the changes in currents due to the closure wall. Point
velocities were taken at 60 percent of the water depth with the base test and
Plan C. Velocity data for Plan C (Plates 72 and 73) indicated that velocities in
the powerhouse forebay increased significantly when compared to the base test
(Plates 74 and 75) due to reduction of the flow area by the closure wall. The
maximum approach velocity recorded with Plan C was 7.1 fps with a
249,000-cfs riverflow. The maximum approach velocity recorded with the base
test was 3.7 fps with a 249,000-cfs riverflow.
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Water-surface elevations. Water-surface elevations for Plan C are shown in
Tables 6 and 7 and gauge locations are shown in Figure 11. The slope in water
surface from model gauges 1 and 5 ranged from less than 0.1 to about 0.4 ft/mile
with 29,000- and 249,000-cfs riverflows, respectively. With a 249,000-cfs
riverflow, the water-surface elevation at model gauge 6 dropped by about 0.5 ft
when compared to the base test. The maximum head loss recorded across the ice
fender was 0.1 ft with a 249,000-cfs riverflow. And the maximum head loss
across the closure wall was 0.7 ft with a 249,000-cfs riverflow.

Navigation conditions. Navigation conditions were satisfactory for tows
entering and cxiting the upper lock approach with all riverflows tested
(Plates 76-52). Although this plan did not provide a guide wall for downbound
tows, tows would mancuver in slack water to align with the lock. With river-

flows through 122.000 cfs, downbound tows could drive into the protection of
the closurc wull. reverse engines when the head of the tow was about 1,500 ft
upstream ot the lock. and align with the lock chamber without major difficulties.
Downbound tows driving close along the right bank could approach the lock at a
slower specd (Plate 77). With a 249,000-cfs riverflow, a flanking maneuver was

required tor downbound tows to maintain an acceptable speed entering the lock
forebay. Downbound 1ows that were not properly aligned when entering the lock
forebay exposcd the stern of the tow to the outdraft near the upstream end of the

closure wall und could be rotated out of alignment (Plate 78). Downbound tows
moving close alonyg the right bank and maintaining proper alignment entering the

lock forchuay could reverse engines about 1,200 ft upstream of the lock and align
with the lock chamber without major difficulties, as shown in Plate 79. Naviga-
tion conditions were satisfactory for upbound tows. Upbound tows could push
out of the fock chamber into the slack water canal, let the stern of the tow clear
the lock. rotate the head of the tow toward the right bank and push out of the
lock canal into> the river channel, as shown in Plates 80-82. However, tows exit-
ing the slack water canal parallel with the closure wall experienced a strong
tendency to be pushed into the closure wall or the ice fender.

Plan C-1

Description

Plan C-1, shown in Figure 12, is the same as Plan C, with one exception:
four submerged dikes, spaced 500 ft apart, with top elevation 498.2 ft, were
placed along the right bank upstream of the ice fender. The dike locations are
given in Table 8.

Results
Current direction and velocities. Current direction and velocity data,

shown in Plates 83 - 87, indicated the current patterns were generally the same as
with Plan C except there was a separation of flow near the riverward end of the
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dikes. The dike field moved flow out of the upper approach to the lock toward
and through the ice fender. There was a decrease in velocities in the vicinity of
the dikes and near the upstream end of the closure wall when compared to

Plan C. The maximum velocity near the upstream end of the closure wall varied
from about 0.5 to 3.0 fps with 29,000 and 249,0000-cfs riverflows, respectively.
A large eddy formed in the powerhouse forebay with all flows tested. The
maximum upstream velocities of the eddy varied from 0.9 to 2.6 fps with 29,000-
and 249,000-cfs riverflows, respectively. The maximum velocity recorded in the
powerhouse forebay was 5.6 fps with a 249,000-cfs riverflow.

Point velocities. Meter velocity data (Plates 88 and 89) indicated a slight
change in velocities in the powerhouse forebay and a change in the direction of
the current approaching the powerhouse. The current was almost parallel to the
powerhouse face. The maximum velocity recorded was 6.7 fps with a
249,000-cfs riverflow compared to 7.1 fps for Plan C.

Water-surface elevations. Water-surface elevations for Plan C-1 are shown
in Tables 9 and 10 and gauge locations are shown in Figure 13. The slope in
water surface ranged from less than 0.1 to about 0.4 ft/mile with 29,000- and
249,000-cfs riverflows, respectively. There was no significant change in water-
surface elevations in the powerhouse forebay (gauge 6) when compared to
Plan C. The maximum head loss across the ice fender was 0.1 ft with a
249,000-cfs riverflow. The maximum drop across the closure wall was 0.8 ft
with a 249,000-cfs riverflow.

Navigation conditions. Navigation conditions were improved for tows
entering and exiting the lock forebay with all riverflows tested (Plates 90 - 95).
Downbound tows could enter the lock forebay with less speed and maneuvering
due to the decrease in outdraft and current velocities when compared with
Plan C. With riverflows through 122,000 cfs, downbound tows could drive into
the protection of the closure wall, reverse engines when the head of the tow was
about 1,500 ft upstream of the lock, and align with the lock chamber without
major difficulties. With a 249,000-cfs riverflow, downbound tows could flank
along the right bank to a point about 500 ft upstream of the ice fender, align the
head of the tow with the right bank, and drive into the protection of the closure
wall (Plate 92). Upbound tows could push out of the lock chamber into the slack
water canal, let the stern of the tow clear the lock, rotate the head of the tow
toward the right bank and push out of the lock canal into the river channel
without major difficulties (Plates 93-95). However, tows exiting the slack water
canal parallel with the closure wall experienced a strong tendency to be pushed
into the closure wall or the ice fender.

Plan D

Description

Plan D, shown in Figure 14, is the same as the base test, with one exception:
the riverside wall of the lock was extended upstream 200 ft to sta 15 + 71.5.
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Results

Current direction and velocities. Observation of the model indicated no
major changes in current patterns when compared with the base test. Therefore,
current direction and velocity data were not recorded.

Water-surface elevations. Water-surface elevations for Plan D, shown in
Table 11, indicated no significant changes when compared with the base test.

Navigation conditions. - Generally, navigation conditions for tows entering
and exiting the lock forebay were the same as with the base test (Plates 96-101).
Downbound tows were required to approach the lock close along the right bank
to align with and enter the lock, the same as with the base test (Plates 96-98).
The extension of the riverside wall was considered an aid for downbound traffic
approaching the lock. The extension of the riverside wall allowed the head of
the tow to be placed on the extension, move the stern of the towboat toward the
powerhouse, align with the lock, and push into the lock chamber. Upbound tows
could push out of the lock chamber, clear the extension, and swing the head of
the tow toward the right bank without major difficulties. Although the extension
required upbound tows to push out of the lock chamber an additional 200 ft
before maneuvering to move upstream along the right descending bank, it did not
appear to adversely impact navigation conditions for upbound traffic
(Plates 99-101). It should be noted that although no observations of an upbound
tow dragging a “hip” barge were made, a tow configuration of this type could
cause an upbound tow to encroach on the powerhouse more so than a standard
configured tow (5 ft long by 3 ft wide).

Plan D-1

Description

Plan D-1 shown in Figure 15 and Photo 10, is the same as Plan D, with one
exception: four submerged dikes spaced 500 ft apart with a 498.2-ft top
elevation, were placed along the right bank upstream of the ice fender.

Results

Current direction and velocities. Current direction and velocity data,
shown in Plates 102 - 106, indicated a change in the current pattern and velocity
in the upper lock approach when compared to the base tests; i.e., existing
conditions. The dike field reduced current velocities near mid-channel in the
upper lock approach; however, velocities increased along the right bank. The
dike field redistributed the flow in the upper lock approach and reduced slightly
the flow entering the approach. The current velocities near mid-channel at the
upstream end of the ice fender were reduced about 0.4 and 2.0 fps with 62,000-
and 249,000-cfs riverflows, respectively, when compared to the base test.
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However, current velocities increased along the right bank at the upstream end of
the ice fender. The increase in velocities along the right bank ranged from about
0.5 fps with a 62,000-cfs riverflow to about 2.5 fps with a 249,000-cfs riverflow.
Current velocities along the right bank ranged from about 1.2 to 3.2 fps with
62,000 and 249,000-cfs riverflows, respectively. The clockwise eddy in the lock
forebay was reduced in size when compared to the base test. The change in the
eddy was most notable with a 249,000-cfs riverflow.

Water-surface elevations. Water-surface elevations are shown in Table 12.
There was no significant change in water-surface elevations when compared to
the base test. Water-surface elevations increased about 0.1 ft at model
gauges 1-3 with riverflows above 122,000 cfs and model gauge 6 generally
decreased by 0.1 ft.

Navigation conditions. Navigation conditions for downbound tows entering
the upper lock approach, shown in Plates 107-110 and Photos 11-13, did not
significantly change when compared to the base test with existing conditions or
Plan D. Downbound tows were required to approach the lock close to the right
bank in the same manner as with the base test and Plan D. There was a tendency
for the currents generated by the powerhouse to move the tow out of alignment
with the lock and more maneuvering was required when downbound tows did
not approach the lock close to the right bank (Plate 108 and Photos 11-12). The
dike field redistributed the flow in the approach and the velocities along the right
bank were increased. This could adversely impact a downbound tow approach-
ing the lock, especially with the higher riverflows (Plate 110 and Photo 13).

This is particularly important when making the final turning maneuver to align
with and enter the lock chamber (Plates 108-110 and Photos 11-13). Navigation
conditions for upbound tows, shown in Plates 111-113 and Photos 14 -16, were
nearly the same as the base test and Plan D. Upbound tows could push out of the
lock chamber, clear the extension, and swing the head of the tow toward the right
bank without major difficulties. With the higher riverflows, upbound tows
exiting the upper lock approach may tend to encroach on the powerhouse more
than in tests with existing conditions or tests with Plan D conditions (Plate 113
and Photo 16).
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4 Results and Conclusions

Limitations of Model Results

Analysis of the results of this investigation is based on a study of the effects
of the various alternatives on current directions and velocities, water-surface
elevations, and the effects of the resulting currents on the behavior of the model
towboat and tow. In evaluating test results, it should be remembered that small
changes in current direction and velocities are not necessarily changes produced
by a particular modification because several floats introduced at the same point
may follow a different path and move at a slightly different velocity due to
eddies and pulsating currents. The current directions and velocities shown in the
plates were taken with floats submerged to the draft of a loaded barge (9-ft
prototype) and are indicative of the currents that affect tow behaviors.

As this was a small model scale, it was difficult to accurately reproduce the
hydraulic characteristics of the prototype structures or to measure water-surface
elevations within a prototype accuracy greater than about 0.1 ft. Since the model
data were based on steady flow conditions but the flow varied in the prototype,
prototype current directions and velocities could be somewhat different from
model current directions and velocities. The model was of the fixed-bed type
and was not designed to reproduce overall sediment movement that might occur
in the prototype with the various alternatives tested. Thus, changes in the
channel configuration resulting from scouring and deposition and any resulting
changes in current directions and velocities were not evaluated.

Summary of Results and Conclusions

The following results and conclusions were developed during the study:

a. Base tests, downbound tows. Navigation conditions were very difficult
entering the upper lock approach and required a considerable amount of
maneuvering for downbound tows to enter the lock chamber. With the
higher riverflows, some type of assistance may be required for tows
entering the upper lock approach.

b. Base tests, upbound tows. Navigation conditions were satisfactory
leaving the upper lock approach, provided tows maintained control.

Chapter 4 Results and Conclusions
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Pre-existing conditions, downbound tows. Navigation conditions were
very difficult and dangerous entering the upper lock approach.

Pre-existing conditions, upbound tows. Navigation conditions were
satisfactory leaving the upper lock approach. With the higher riverflows,
there was a tendency for upbound tows to slide toward the radial ice
fender.

Plan A, downbound tows. Navigation conditions approaching the lock
improved when compared to the base test. The maneuvering required for
tows to align with and enter the lock chamber was reduced. However, a
strong outdraft developed near the upstream end of the ice fender that
could adversely affect navigation with the higher riverflows.

Plan A, upbound tows. Navigation conditions were satisfactory leaving
the upper lock approach.

Plan A-Modified, downbound tows. Navigation conditions were better
approaching the lock when compared to Plan A. The outdraft near the
upstream end of the ice fender was reduced.

Plans B and B-1. Cells placed in the lock forebay did not significantly
improve navigation conditions for downbound tows when compared to
the base test.

Plans B and B-1. Cells placed in the lock forebay would restrict the
maneuvering of upbound tows and adversely affect navigation conditions.

Plan C. This plan provided some protection for tows maneuvering to
enter or exit the lock forebay. Downbound tows could drive into the
slack water behind the closure wall and maneuver to align with and enter
the lock chamber.

Plan C. Navigation conditions were satisfactory for upbound tows
leaving the upper lock approach.

Plan C-1. The four submerged dikes placed upstream of the lock forebay
reduced the flow along the right descending bank, and improved naviga-
tion conditions for downbound tows approaching the lock when com-
pared to Plan C.

. Plan C-1, upbound tows. Navigation conditions were satisfactory.

Plan D, downbound tows. Extending the riverside lock wall upstream
200 ft provided some aid to downbound tows aligning with the lock
chamber. However, the navigation conditions approaching the lock
would be the same as with the base tests.

Plan D, upbound tows. It did not restrict the maneuverability of a
15-barge tow enough to create any major difficulties. However, the

Chapter 4 Results and Conclusions




maneuverability of a 16-barge tow with a starboard hip barge may be
restricted enough to create some difficulties.

p- Plan D-1. The placement of the dike field upstream of the ice fender did
not significantly improve navigation conditions for tows entering and
leaving the upper lock approach when compared to base tests with
existing conditions or Plan D.

q. Plan D-1. It is likely that navigation conditions for both downbound and

upbound tows could be more difficult due to the increase in velocity
along the right bank.
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Table 1

Water-Surface Elevations, ft (NGVD), Base Tests

Discharge in 1,000 cfs

Gauge No. 29 62 122 177 249

1 518.2 518.2 518.3 518.4 518.6
2 518.2 518.2 518.3 518.3 518.4
3 518.2 518.2 518.3 518.2 518.2
4 518.1 518.2 518.2 518.2 518.2
5 518.2 518.2 518.2 518.2 518.2
6 518.2 518.1 518.2 518.2 518.2
7 518.2' 518.21 518.2' 518.2 518.2'

' Controlled elevations.

Table 2

Water-Surface Elevations, ft (NGVD), Pre-Existing Conditions

Discharge in 1,000 cfs

Gauge No. 29 62 122 177 249

1 518.2 518.2 518.3 518.4 518.7
2 518.2 518.2 518.3 518.3 518.5
3 518.2 518.2 518.2 518.3 518.3
4 518.2 518.2 518.2 518.2 518.2
5 518.2' 518.2' 518.2° 518.2" 518.21
6 518.2 518.1 518.1 518.2 518.2
7 518.2 518.2 518.2 518.2 518.2

! Controlied elevations.




Table 3

Water-Surface Elevations, ft (NGVD), Plan A, Gauges 1-7

Discharge in 1,000 cfs
Gauge No. 29 62 122 177 249
1 5183 518.2 518.4 518.6 518.7
2 518.3 518.2 518.3 518.4 518.6
3 5183 518.2 518.3 518.3 518.4
4 5182 518.2 518.3 518.3 518.4
5 S182 518.2 518.2 518.2 518.2°
6 5162 518.0 518.0 517.9 517.7
7 Y1E 3 518.2 518.3 518.3 518.3
' Controlled s, .o
Table 4
Water-Surface Elevations, ft (NGVD), Plan A, Gauges 1A-6B
Discharge in 1,000 cfs
Gauge No 29 62 122 177 249
1A €2 518.2 518.2 518.2 518.1
1B e 517.9 518.0 518.0 517.9
2A 182 518.2 518.2 518.2 518.1
2B 5181 517.9 517.9 517.8 517.6
3A 5182 518.1 518.0 517.9 517.8
3B 5182 517.9 517.9 517.9 517.5
4A 5182 518.2 518.3 5184 517.8
5A 518.2 518.1 518.2 518.3 518.4
5B 518.1 517.9 517.9 518.0 517.7
B6A 518.1 518.0 5181 518.2 518.2
6B 518.1 517.9 517.9 518.0 517.8

the guard wall.

Note: Water-surface elevations recorded to measure head loss across the radial ice fender and




Table 5

Water-Surface Elevations, ft (NGVD), Plan A-Modified

Discharge in 1,000 cfs

Gauge No. 29 62 122 177 249

1 518.2 518.2 518.2 518.5 518.7

2 518.2 518.2 518.2 518.4 518.6

3 518.2 518.2 518.2 518.4 518.4

4 518.2 518.2 518.2 518.3 518.3

5 518.2 518.2 518.2' 518.2" 518.2'

6 518.2 517.9 518.1 517.9 518.0

7 518.2 518.2 518.2 518.2 518.2

' Controlled elevations.

Table 6

Water-Surface Elevations, ft (NGVD), Plan C, Gauges 1-7
Discharge in 1,000 cfs

Gauge No. 29 62 122 177 249

1 518.2 518.2 518.4 518.5 518.8

2 518.2 518.2 518.3 518.4 518.6

3 518.2 518.2 518.3 518.3 518.4

4 518.2 518.2 518.2 518.3 518.3

5! 518.2 518.2 518.2 518.2 518.2

6 518.1 517.7 517.7 517.7 517.7

7 518.2 518.2 518.3 518.3 518.4

' Controlled elevations.




Table 7
Water-Surface Elevations, ft (NGVD), Plan C, Gauges 1A-4B

Discharge in 1,000 cfs

Gauge No. 29 62 122 177 249

1A 518.2 518.2 518.3 518.3 518.4
1B 518.2 518.2 518.2 518.2 518.3
2A 518.2 518.2 518.3 518.3 518.4
2B 518.2 518.2 518.3 518.3 518.3
3A 518.3 518.3 518.4 517.4 518.4
3B 518.0 517.7 517.7 517.7 517.7
4A 518.2 518.2 518.3 518.3 517.3
4B 518.0 517.7 517.7 517.7 517.7

Note: Water-surface elevations recorded to measure head loss across the radial ice fender and
the closure wall.

Table 8

Dike Locations, Plan C-1

Dike State Plane Coordinates Azimuth Toward Length, ft

No. lowa - South Zone Riverward End Right Bank

1 N  155,652.24 260-42-48 460.38
E 2,592,311.80

2 N 155,164.38 260-42-48 436.21
E 2,592,426.65

3 N 154,674.58 260-42-48 485.30
E 2,592,529.61

4 N 154,176.80 260-42-48 475.76
E 2,592,583.81




|

Table 9
Water-Surface Elevations, ft (NGVD), Plan C-1, Gauges 1-7

Discharge in 1,000 cfs
Gauge No. 29 62 122 177 249
1 518.2 518.2 518.4 518.5 518.9
2 518.2 518.2 5184 518.4 518.7
3 5182 518.2 518.3 518.3 518.4
4 51872 518.2 518.3 518.2 518.3
5 LD 518.2 518.2 518.2 518.2
6 L1 517.7 517.7 517.7 517.6
7 crEl 518.2 518.3 518.3 518.4
! Controlled +-. +*
Table 10
Water-Surface Elevations, ft (NGVD), Plan C-1, Gauges 1A-4B
Discharge in 1,000 cfs
Gauge No 29 62 122 177 249
1A frEl 518.2 518.3 518.2 518.2
1B frEl 518.1 518.2 518.1 518.2
2A srel 518.2 518.3 518.2 518.3
2B L1 518.1 518.2 518.2 518.3
3A L1802 518.3 518.3 517.3 518.4
3B S1E Y , 517.7 517.8 517.7 517.6
4A 5182 518.2 518.3 518.3 517.3
4B 5181 517.8 517.8 517.7 517.7

Note: Water-surface elevations recorded to measure head loss across the radial ice fender and
the closure wall.




Table 11
Water-Surface Elevations, ft (NGVD), Plan D

Discharge in 1,000 cfs
GaugeNo. | 29 62 122 177 249
1] e 518.2 518.3 518.4 518.6
2 e 518.2 518.3 518.3 518.4
3 e 518.2 518.3 518.2 518.2
R — 518.2 518.2 518.2 518.2
5 ] e 518.2' 518.2" 518.2° 518.2"
L — 518.1 518.2 518.2 518.2
7] e 518.2 518.2 518.2 518.2
' Controlled elevations.
Table 12
Water-Surface Elevations, ft (NGVD), Plan D-1

Discharge in 1,000 cfs
Gauge No. 29 62 122 177 249
1 518.2 518.2 518.3 518.5 518.8
2 518.2 518.2 518.3 518.4 518.5
3 518.2 518.2 518.2 518.3 518.3
4 | 5182 518.2 518.2 518.2 518.3
5 518.2" 518.21 518.2" 518.2" 518.2
6 518.1 518.1 518.1 518.1 518.1
7 518.2 518.2 518.2 518.2 518.2

' Controlled elevations.




B ek,

00| 8y} 0} Aegauo} pue yoeoidde aujy Buimoys ‘wesisdn Buioo| ‘ise eseq

=
S u/%,”,
O

I 0104yd




susejed
ua.und aoeuns Buimoys mejuoo ‘wesnsdn Buiyoo “sjo 00029 = obieyosip asnoyiemod ‘s 000'29 = MOJJIBAL [B)0} ‘IS8 ] aseg "g 0l0Ud




Photo 3. Base Test, total riverflow = 62,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of downbound tow approaching and entering the lock (note
maneuvering required to enter lock)
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Photo 4. Base Test, total riverflow = 122,000 cfs, powerhouse discharge = 62,000 cfs. Looking

upstream, showing the path of downbound tow approaching and entering the lock (note
maneuvering required to enter lock)




Photo 5. Base Test, total riverflow = 122,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of downbound tow approaching lock (note tendency for
currents to move tow toward powerhouse)




Photo 6. Base Test, total riverflow = 249,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of downbound tow approaching and entering the lock (note
maneuvering required to enter lock)




Photo 7. Base Test, total riverflow = 62,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of upbound leaving lock




Photo 8. Base Test, total riverflow = 122,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of upbound tow leaving lock




Photo 9. Base Test, total riverflow = 249,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of upbound tow leaving lock




Photo 10. Pian D-1, looking upstream, showing the structures




Photo 11.

Plan D-1, total riverflow = 62,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of downbound tow approaching and entering the lock
(note tendency for stern of tow to move toward powerhouse)




Photo 12. Plan D-1, total riverflow = 122,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of downbound tow approaching and entering the lock (note
maneuvering required for tow to enter lock)




Photo 13. Plan D-1, total riverflow = 249,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of downbound tow approaching and entering the lock (note
tendency for stern of tow to move toward powerhouse and maneuvering required to enter
fock)
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Photo 16. Plan D-1, total riverflow = 249,000 cfs, powerhouse discharge = 62,000 cfs. Looking
upstream, showing the path of upbound tow leaving lock (note clearance between
stern of tow and powerhouse)
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REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
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